If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-150x-9000=0
a = 3; b = -150; c = -9000;
Δ = b2-4ac
Δ = -1502-4·3·(-9000)
Δ = 130500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{130500}=\sqrt{900*145}=\sqrt{900}*\sqrt{145}=30\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-30\sqrt{145}}{2*3}=\frac{150-30\sqrt{145}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+30\sqrt{145}}{2*3}=\frac{150+30\sqrt{145}}{6} $
| -16x+4-3(x-1)=-3x-(15x-2)+3 | | 12y+6=8y+6 | | 3x+6+88=11x+14 | | (h/6+h/10=1) | | x=5+3(x−1) | | J=13v-13 | | 4(3x-1)-(x+)=24 | | -5=7b+6+4b | | J=13v-13.V=8 | | 3x+9.5=17 | | n÷3-10=6 | | 4x-28+3-2x=-10x-5 | | 17x+-10=11x+5 | | -5t-8=32 | | 6d+8=14+2d | | 1.037x+0.02x=30.285 | | 1/2(2h+4)=3h-4 | | 1037x+0.02x+25=2.81 | | 2/3x-3/4=1/6x+21/24 | | (4x+11)(4x-11)=0 | | (x+1)^4+16=0 | | (x=1)^4+16=0 | | -101=-5+3(3-5x) | | 18=t/12+15 | | -7+7(1-2n)=-7n-35 | | 3(7x-5)=-57 | | 3n-15÷4=2n | | 6(1-6k)=-37+7k | | -4(d+1)-d-8=-5(d+5)+13 | | 2x-5+7x-10=48 | | 13x-6-5x=58 | | 35+5r=3(-3-2r) |